Развитие теории морозостойкости бетона возможно только на основе учета и использования современных гипотез о причинах и механизме разрушения бетона при совместном действии на него воды и мороза.
Наиболее просто объяснить разрушение каменного материала в этих условиях давлением воды, замерзающей в его порах. Это объяснение, считавшееся ранее само собой разумеющимся и исчерпывающим, нашло выражение в количественной оценке морозостойкости камня по коэффициенту насыщения пор водой. Однако по средней величине коэффициента насыщения нельзя Предугадать морозостойкость капиллярно-пористого материала, каким является бетон, так как миграция воды приводит к неравномерному распределению ее в железобетонной конструкции. Роль расширения воды при замерзании учитывается и в современных гипотезах, но само по себе это физическое явление не может полностью объяснить процесс разрушения бетона.
В этой связи большое значение для развития теории морозостойкости бетона имеют работы Г. К. Дементьева и Ю. А. Нилендера. Ю. А. Нилендер дал научную классификацию пустот и трещин в бетоне, выделив пустоты, образовавшиеся при укладке бетона (каверны, воздушные поры, водные поры), и трещины, возникшие в результате силовых воздействий. Трещины от силовых воздействий подразделяются на две группы: от внешних нагрузок и от собственных напряжений. Собственные напряжения в бетоне, по классификации Ю. А. Нилендера, могут быть трех родов:
1. Макроструктурные напряжения, возникающие вследствие неравномерного распределения температуры или влаги в объеме бетона, а также при условиях, препятствующих свободной деформации от усадки, набухания и изменения температуры; это - ориентированные напряжения, уравновешивающиеся в объемах отдельных элементов конструкций.
2. Микроструктурные напряжения, возникающие в оболочках из цементного камня и зернах заполнителя вследствие их различной деформации при изменении влажности и температуры. Микроструктурные напряжения появляются также в стенках пор цементного камня еще в период твердения вследствие теплового расширения воды затворения и воздуха при пропаривании, а также под действием капиллярных сил, осмотического давления, давления замерзающей в порах воды. Микроструктурные напряжения уравновешиваются в объемах, соизмеримых с размером ячейки «зерно заполнителя - оболочка» или с размером пор в цементном камне. Теоретический анализ микроструктурных напряжений имеет качественный характер, так как он выполняется для ячейки «зерно заполнителя - оболочка» или для отдельной поры, которые условно выделяются из бетона. Поэтому формулы, полученные для вычисления микроструктурных напряжений, не дают действительных величин этих напряжений в бетоне. Однако результаты теоретического анализа представляют ценность при рассмотрении механизма разрушения бетона, так как позволяют учесть факторы коррозии и выяснить направленность действия этих факторов.
3. Ультрамикроструктурные напряжения - дезориентированные, уравновешивающиеся в объемах, соизмеримых с размером кристаллов новообразований в цементном камне. При взаимодействии кристаллической и гелевой составляющих цементного камня возникают ультрамикроструктурные напряжения, роль которых впервые была выяснена в работах А. Е. Шейкина.
Представления о роли деформаций в процессе физической коррозии бетона получили развитие в исследованиях Н. А. Попова. При чередующихся циклах воздействия среды на пористый материал наблюдается накопление остаточных деформаций, что делает это явление сходным с накоплением пластических деформаций от многократных знакопеременных механических воздействий, приводящих к усталости материала.